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Abstract. This paper is devoted to computer modeling of the process of con-
structing free projective planes - more precisely, to algorithmically finding
their successive incidence matrices - and also to considering some numerical
characteristics of these matrices.

Introduction

Free projective planes were first introduced by M. Hall in his fundamental paper [1]
where he considered their basic properties. Since then, these planes have become
the subject of constant interest of mathematicians studying abstract algebraic
structures, group theory and their representations, and so on [2, 3, 5, 6, 7]. There
are also good surveys which one can use to get acquainted with the basic concepts
and achievements of the modern theory of combinatorial geometries, for example,
[4, 8].

This paper is devoted to computer modeling of the process of constructing
free projective planes - more precisely, to algorithmically finding their successive
incidence matrices - and also to considering some numerical characteristics of these
matrices.

Remarks about notations: If A is a (non-empty) matrix then dim1(A) (resp.
dim2(A)) is a number of its rows (resp. columns); [A]i,j means its element at
the entry (i, j); Ai (resp. Aj) means i−th row (resp. j-th column); diag(A) for a
square matrix A means column-vector of its diagonal elements; Total[A] is a sum
of all elements in A. Moreover, we treat binomial coefficient

(
x
2

)
and differential

operators (derivatives, Laplace operator) as listable functions.
ηi,j is a column-vector with ”1”−s only in two different positions i and j and

all the rest components equal to ”0”−s.
As a rule we do not show the matrix format explicitly until it is not clear

from context.
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E denotes identity matrix; J is a square constant matrix of (only) ”1”−s;
J∗ = J −E; {} denotes empty matrix; ⟨ , ⟩ means Euclidean scalar product; for a

matrix A and real α we define a product α•A as follows: α•A =

{
αA, if α ̸= 0

{}, if α = 0.

A ◦ B denotes the element-wise (Hadamard) product of matrices with the
identical formats.

If A and B are matrices having appropriate formats then A|∪B(resp. A∪B)
denotes a concatenation of A and B from the right (resp. “from below”) providing
A| ∪ {} = A ∪ {} = A.

1. Preliminaries
In this section we mostly follow the terminology and definitions of book [4].
Definition 1. A configuration (or a partial plane [1]) is a pair Π = (P,L) where P
is (nonempty) set of points and L is a family of subsets of P called lines under the
condition that the following axiom is valid:

C1: Any two different points are incident with no more than one line.
Axiom C1 implies

C2: Any two different lines are incident with no more than one point in
common. [4]

As a rule in this paper we shall be interested only in the case of finite sets P.
Examples 1.

1. Desargues and Pappus configurations are well-known (cf. [4]) .
2. If in Definition 1 L = ∅ and |P | = m, m > 0 is an integer, then we have a

pure m−points configuration.
3. If L consists of all pairs {a, b}, a, b ∈ P, a ̸= b then Π = (P,L) is a full

graph on m vertices.
4. Let Πm = (P,L), m ≥ 4 be a configuration with |P | = m and only one

line λ, (i.e. L = {λ}) where |λ| = m − 2. This means that all points besides two
of them lie on the (unique) line λ. These configurations are called standard [8] or
Hall configurations and were first introduced by M. Hall in his fundamental paper
[1], p. 237.
Definition 2. Configuration Π = (P,L) is called a projective plane, if in axioms
C1 and C2 the words "...with no more than one..." are changed by "... exactly
one...", i.e. in Π = (P,L) the following axioms are valid:

P1: Any two different points are incident to exactly one line;
P2: Any two different lines are incident to exactly one point in common;

and in addition the axiom
P3: There exist 4 different points such that no three of them are collinear; in

order to exclude some degenerate configurations (cf. [8]).
The following simple statements can be easily proved for a finite projective

plane [2]:
A) Every line is incident to exactly n+ 1 points;
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B) Every point is incident to exactly n+ 1 lines;
C) |P | = |L| = N = n2 + n+ 1.
The number n is called the order of the finite projective plane.
"Prime-power hypothesis for the orders of the finite projective planes" claims

that always n = pµ for some prime p. Nowadays this hypothesis remains unproved.
If Π = (P,L) is a finite configuration with |P | = m and |L| = l, l > 0 then

the incident matrix of Π is defined as l ×m 0-1-matrix A = (ai,j) where

ai,j =

{
1, if point j is incident with line i

0, if point j and the line i are not incident
1 ≤ i ≤ L.1 ≤ j ≤ m (1)

in some chosen (and fixed) numerations of sets P and L.
Obviously

Total[Ai] =

n∑
j=1

ai,j =

n∑
j=1

a2i,j (2)

= ⟨Ai, Ai⟩ = (number of points on the i− th line)

Total[Aj ] =

l∑
i=1

ai,j =

l∑
i=1

a2i,j (3)

= ⟨Aj , Aj⟩ = (number of lines incedent to the j − th point)

Tr(AAT ) = Tr(ATA) = Total(A) (4)

If all the outside-diagonal elements in AAT (resp., ATA) are equal to 1, we
say that configuration is line-wise ample (resp. point-wise ample).

Clearly, if Π = (P,L) is a projective plane of order n then it is both point-wise
ample and line-wise ample and its incident matrix is a square N ×N 0-1-matrix
such that

AAT = ATA = nE + J (5)
(cf. for example, [2]).

2. Free projective plane generated by configuration
Let Π0 = (P0, L0) be some (initial) configuration. The free projective plane gen-
erated by Π0 is defined by the following process:
1. Let Π1 = (P1, L1) be a new configuration where L1 = L0 and P1 = P0 ∪ νP0

νP0 = {(a)(b)|a, b ∈ L0, a and b are not incident in Π0} (6)

i.e. every pair of non-incident lines defines a new point named (a)(b) which is
"intersection" of lines a and b. Evidently Π1 is line-wise ample.
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2. Let Π2 = (P2, L2) be a new configuration where P2 = P1 and L2 = L1 ∪ νL1

νL1 = {(a)(b)|a, b ∈ P1, a and b are not incident in Π1} (7)

i.e. every pair of non-incident points a and b defines a new line named (a)(b) which
"connects" points a and b. Evidently Π2 is point-wise ample.

Iterating this construction we get a sequence (finite or infinite) of configura-
tions {Π0,Π1,Π2,Π3,Π4,Π5, . . . ,Πr, . . . } in which for r even we add new points
to Πr, as in item 1 and for r odd we add new lines to Πr as in item 2 and get next
configuration Πr+1, r ≥ 0.

Proposition 1 (see [4]). If Π0 contains 4 different points no three of which are
collinear then Π = fr(Π0) =

∪∞
k=0 Πk is a projective plane.

This plane is said to be the free projective plane generated by Π0.

Example 2
1. If Π0 is a projective plane then evidently fr(Π0) = Π0.

2. If |Π0| = 3 and |L0| = 0 then fr(Π0) is called a "projective plane of order
n = 1" (see Definition 2, p.1) and it is a plane over the field of one element (Fig.1,
left). Its incident matrix is cyclic.

Figure 1. Projective plane of order n = 1 (left) and its incident
matrix (right).

The following theorem of M. Hall (see [1]) explains the importance of Hall
configuration Π4 :

1) Let Π0 is any non-degenerate configuration but not a projective plane.
Then fr(Π0) contains fr(Π4) as a subplane. Moreover, such plane is never desar-
guesian.

2) A fr(Πm), m ≥ 4 contains fr(Πm+1).

Everywhere in what follows we deal only with the Hall configuration Π4, i.e.
fr(Π4) = {Π4

r}r=0,1,2,..., that is "free equivalent"(see [1]) to pure configuration on
4 points, or full graph with 4 vertices.

3. Matrix approach

According to what was said at the end of previous section we begin with con-
figuration Π0 = Π4 (which is zero-step, s = 0, of our algorithm) with incident
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matrix

A0 =


0 0 1 1
0 1 0 1
0 1 1 0
1 1 0 0
1 0 1 0
1 0 0 1


which corresponds to the configuration 3 from Example 1 with m = 4. This con-
figuration (tetrahedron) is shown below on Fig. 2 (left), where the numeration of
lines is omitted.

Evidently here dim1(A0) = Λ0 = 6, dim2(A0) = P0 = 4. Since

Figure 2. Initial configuration Π0 = Π4 (left) and two steps of
the algorithm: adding new points (center) and new lines (right).

A0A
T
0 =


2 1 1 0 1 1
1 2 1 1 0 1
1 1 2 1 1 0
0 1 1 2 1 1
1 0 1 1 2 1
1 1 0 1 1 2

 AT
0 A0 =


3 1 1 1
1 3 1 1
1 1 3 1
1 1 1 3


this configuration is point-wise ample (any two different points are incident), but
is not line-wise ample because exactly 3 pairs of lines, namely 1,4, 2,5 and 3,6,
have no points in common.

According to item 1 of the general constructing of fr(Π0) at the next step
s = 1 we must add to Π0 νP0 = 3 new points, namely (1)(4), (2)(5) and (3)(6) (see
Fig. 2), that means that we must concatenate (from the right) to A0 three new
columns numbered respectively 5, 6, 7, whereas the amount of new lines νA0 = 0.

So, here dim1(A1) = Λ1 = Λ0 = 6, dim2(A1) = P0 + νP0 = 4 + 3 = 7 and
the matrix of the next configuration Π1 (see Fig.2 (center)) is

A1 =


0 0 1 1 1 0 0
0 1 0 1 0 1 0
0 1 1 0 0 0 1
1 1 0 0 1 0 0
1 0 1 0 0 1 0
1 0 0 1 0 0 1


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Note that positions of ”1”−s in the concatenated columns are (clearly why) exactly
1 and 4, 2 and 5, and 3 and 6.

Going over to the next step s = 2 we find that

A1A
T
1 =


3 1 1 1 1 1
1 3 1 1 1 1
1 1 3 1 1 1
1 1 1 3 1 1
1 1 1 1 3 1
1 1 1 1 1 3

 AT
1 A1 =



3 1 1 1 1 1 1
1 3 1 1 1 1 1
1 1 3 1 1 1 1
1 1 1 3 1 1 1
1 1 1 1 2 0 0
1 1 1 1 0 2 0
1 1 1 1 0 0 2


So, here dim1(A2) = Λ+2 = Λ1+νΛ1 = 6+3 = 9, dim2(A2) = P2 = P1+νP1 =
7 + 0 = 7 and the matrix of the next configuration (see Fig.2 center) is

A2 =



0 0 1 1 1 0 0
0 1 0 1 0 1 0
0 1 1 0 0 0 1
1 1 0 0 1 0 0
1 0 1 0 0 1 0
1 0 0 1 0 0 1
0 0 0 0 1 1 0
0 0 0 0 1 0 1
0 0 0 0 0 1 1


Now it is not difficult to describe the general case for any step s > 0 :

a1) If s ≡ 1 mod 2 we add new points

νPs−1 = (number of non-incident lines at step s− 1)

=
1

2
(number of "0"-s in As−1A

T
s−1) (8)

=

(
Λs−1

2

)
− Total

[(
diag(AT

s−1As−1)

2

)]
=

(
Λs−1

2

)
− Total

[(
AT

s−1As−1

2

)]
whereas clearly νAs−1 = 0.

So, in this case we get a formula (we remind that 0 • a = {}):

As = As−1|
∪

2≤i≤As−1i≤j≤As−1

(
(1− [As−1A

T
s−1]i,j) • ηi,j

)
(9)

Dually,
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a2) If s ≡ 0 mod 2 we add new lines

νΛs−1 = (number of non-incident points at step s− 1

=
1

2
(number of "0"-s in AT

s−1As−1) (10)

=

(
Ps−1

2

)
− Total

[(
diag(As−1A

T
s−1)

2

)]
=

(
Ps−1

2

)
− Total

[(
As−1A

T
s−1

2

)]
whereas clearly νPs−1 = 0.

For example, for s = 2 we get νΛ1 =
(
7
2

)
−6 ·

(
3
2

)
, since P1 = 7, diag(A1A

T
1 ) =

(3 3 3 3 3 3). So, in this case we get a formula:

As = As−1

∪
2≤i≤As−1i≤j≤As−1

(
(1− [AT

s−1As−1]i,j) • ηTi,j
)

(11)

Formulas (9) and (11) give rise to the first variant of our algorithms.

4. Bilinear forms approach

Let π = {pi}∞i=1 and λ = {li}∞i=1 be two sets of independent variables for points
and lines respectively.

For any step s ≥ 0 we introduce a bilinear form Fs = Fs(π, λ) = πTAsλ
where As is an incident matrix constructed on step s (see Sec. 3) and π and λ are
initial segments of the infinite sequences of variables π and λ having appropriate
lengths. For example, for s = 0 we have π = {pi}4i=1, λ = {li}6i=1 and

F0 = l4p1 + l5p1 + l6p1 + l2p2 + l3p2 + l4p2 + l1p3 + l3p3 + l5p3 + l1p4

+l2p4 + i6p4 (12)
= l1(p3 + p4) + l2(p2 + p4) + l3(p2 + p3) + l4(p1 + p2) + l5(p1 + p3)

+l6(p1 + p4)

= p1(l4 + l5 + l6) + p2(l2 + l3 + l4) + p3(l1 + l3 + l5) + p4(l1 + l2 + l6)

Now it is clear that also in general case Coefficient[Fs, li] =
∂Fs

∂li
is a linear form

in π representing the i−th row of As; Coefficient[Fs, pj ] =
∂Fs

∂pj
is a linear form

in λ representing the j−th column of As.

Also it is clear that two lines, li and lk with 1 ≤ i, k ≤ Λs, i ̸= k are not
incident iff. the linear forms ∂Fs

∂li
and ∂Fs

∂lk
have no variables in common that implies

that in this case the Laplace operator in π

∆π

(
∂Fs

∂li
· ∂Fs

∂lk

)
=
∑
p∈π

∂2

∂p2

(
∂Fs

∂li
· ∂Fs

∂lk

)
= 0 (13)
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and otherwise

∆π

(
∂Fs

∂li
· ∂Fs

∂lk

)
= 2. (14)

It’s clear that if i = k then

λπ

((
∂Fs

∂li

)2
)

= 2 · (number of points on i− th line) = 2
[
diag(AsA

T
s )
]
i

(15)

For example,

∆π

(
∂F0

∂l1
· ∂F0

∂l4

)
=

4∑
r=1

∂2

∂p2r
((p3 + p4)(p1 + p2)) = 0,

whereas

∆π

(
∂F0

∂l1
· ∂F0

∂l2

)
=

4∑
r=1

∂2

∂p2r
((p3 + p4)(p2 + p4)) = 2,

and

∆π

(
∂F0

∂l1

)2

=

4∑
r=1

∂2

∂p2r

(
(p3 + p4)

2
)
= 2 · 2 = 4.

Obviously that formulas dual to (13), (14) and (15) also are valid mutatis mutandis.
Using formulas (13), (14), (15) and their duals it is easy to verify matrices

equalities

1

2
∆π

((
∂Fs

∂λ

)⊗2
)

= AsA
T
s ,

1

2
∆λ

((
∂Fs

∂π

)⊗2
)

= AT
s As, (16)

where ∂Fs

∂λ = gradλ(fs),
∂Fs

∂π = gradπ(fs), the Laplace operators are supposed to
be listable and ⊗2 means tensor square.

These formulas also give rise to alternative algorithm for recursive construc-
tion of fr(Π4).

5. Implementation
As was said above we used "matrix approach", and "bilinear forms approach".

The first difficulty in programming was caused by the requirement to avoid
zero-columns/rows in incident matrices as well as "fictitious" variables in bilinear
forms. This difficulty is surmounted with special procedures for numeration of new
constructed columns/rows of matrices and new variables of bilinear forms.

Rather more serious obstacle is the (mentioned above) fact of the very fast
growth of matrices’ formats. Though those are very sparse 0-1-matrices, the pro-
gramming tools for such matrices provided by Mathematica occurred to be not
sufficient for our purposes, so, the computer memory resources became exhausted
very soon...

So, we managed to calculate only 7 members of the sequence un = νPn+νΛn,
n ≥ 0 (note that one of the two summand in "un" is always equal to 0):
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3, 3, 6, 24, 282, 37233, 684792168, ....
It is easy to check empirically that this sequence grows asymptotically as a

double exponent of n (Fig. 3).

1 2 3 4 5 6 7
n

0.5

1.0

1.5

2.0

2.5

3.0

log(log(u))

Figure 3. Number of elements grows as double exponent (linear
on log(log) scale.
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